No. of Printed Pages: 4

M. C. A./B. C. A. REVISED (MCA/BCA)

Term-End Examination June, 2020

MCS-013: DISCRETE MATHEMATICS

Time: 2 Hours Maximum Marks: 50

Note: Question No. 1 is compulsory. Attempt any three questions from the rest.

- (a) Check whether the following formula is tautology, contradiction or contingency: 5
 ~ ((P → Q) → ((R ∨ P) → (R ∨ Q)))
 - (b) Two finite sets have x and y number of elements. The total number of subsets of the first set is four times the total number of subsets of second set. Find out the value of x-y.

3

2

5

- (c) In a group of 400 people 250 can speak in English only and 70 can speak Hindi only.3
 - (i) How many can speak English?
 - How many can speak Hindi?
 - (iii) How many can speak both English and Hindi?
- If $f: A \to B$ and $B \to C$ are injective (d) function, then $A \rightarrow C$ is an injective function. Prove or disprove.
- Use the method of proof by contradiction to show that $x \in \mathbb{R}$ if $x^3 + 4x = 0$, then x = 0.

(f) Three persons enter in railwav а compartment. If there are 5 seats vacant, in how many ways they can take these seats?

2. (a) Given:

 $A = \{1, 3, 5, 7\}$

$$B = \{2, 3, 5, 8\}$$

- (i) List the elements of $(A \times B) \times (B - A)$.
- Is $(A \times B) \times (B A)$ a subset of $A \times B$? (ii)

(b) Prove that:

$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r} (0 \le r \le n).$$

- 3. (a) Show that in any set of eleven integers there are two which are divisible by 10, by applying pigeonhole principle.
 - (b) How many solutions are the of: x+y+z=17

subject to the constraints:

$$y \ge 2$$

$$z \ge 3$$
.

$$P(A) = \frac{1}{4}$$

$$P(B) = \frac{2}{5}$$

and
$$P(A \cup B) = \frac{1}{2}$$

find:

- (i) $\cdot P(A \cap B)$
- (ii) $P(A \cap B')$

2

- 4. (a) Five balls are drawn from a bag containing 6 white and 4 black balls. What is the probability that 3 are white and 2 black? 3
 - (b) From the digit 1, 2, 3, 4, 5, 6, how many three digit odd numbers can be formed when
 - (i) repetition of digit is allowed?
 - (ii) repetition of digits not allowed? 2
 - (c) How many numbers divisible by 2 lying between 50,000 and 70,000 can be formed from the digits 3, 4, 5, 6, 7, 8, 9, no digit being repeated in any number.
- 5. (a) Show that: $1.2 + 2.3 + \dots n (n + 1) = \frac{n (n + 1) (n + 2)}{3}$
 - (b) Write the negation of the following statement:

 2
 If it is raining, then the game is cancelled.
 - (c) Draw the circuit represented by the following Boolean function:

 $f: xy + \overline{x}y$

3640

MCS-013